Bài 1: Chứng tỏ rằng :
\(\dfrac{11}{15}< \dfrac{1}{21}+\dfrac{1}{22}+......+\dfrac{1}{60}< \dfrac{3}{2}\)
Bài 2: Chứng tỏ rằng:
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+......+\dfrac{1}{n^2}< 1\)
\(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\)
\(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{25}+\dfrac{1}{41}+\dfrac{1}{61}+\dfrac{1}{85}+\dfrac{1}{113}< \dfrac{1}{2}\)
bài 2
a;đặt biểu thức là S | |
S < 1/1.2 + 1/2.3 + .......1/(n-1)n | |
= 1- 1/2 +1 /2 -1/3+........ + 1/n-1 - 1/n | |
= 1 -1/n <1 |
|
vậy S < 1 | |