a: Xét ΔMPK và ΔPMN có
MK=PN
góc KMP=góc NPM
MP chung
=>ΔMPK=ΔPMN
b: ΔMPK=ΔPMN
=>PK=MN
c: Xét tứ giác MNPK có
MK//NP
MK=NP
=>MNPK là hình bình hành
=>MN//PK
a: Xét ΔMPK và ΔPMN có
MK=PN
góc KMP=góc NPM
MP chung
=>ΔMPK=ΔPMN
b: ΔMPK=ΔPMN
=>PK=MN
c: Xét tứ giác MNPK có
MK//NP
MK=NP
=>MNPK là hình bình hành
=>MN//PK
cho tam giác MNP có góc N=góc P kẻ MD vuông góc với NP tại D chứng minh MN=MP, MD là phân giác của góc NMP. Giúp mình với mình đang cần gấp.
Cho tam giác ABC vuông tại A có M là trung điểm của BC. Trên tia đối của tia MA lấy điểm N sao cho MN=MA. a) Chứng minh: AB = NC , tam giác CAN vuông b) Chứng minh: AM = 1/2 BC c) Kẻ MK vuông góc với BN , MI vuông góc với AC . CM I, M , K Thẳng hàng
cho tam giác ABC có AB = Ac. trên OB lấy điểm M trên tia Ac lấy điểm N sao cho AN =AM, gọi I là giao điểm NB và NC
a) chứng minh tam giác ANB = tam giác ANC
b) chứng minh MN // Bc
c) gọi D là trung điểm của BC. chứng minh A,I,D thẳng hàng
cho tam giác MNP có MN=MP. Gọi I là trung điểm của NP
a) CMR; tam giác MNI= MPI
b) CMR; MI là tia phân giác của MNP
c) CMR; MI vuông góc với NP
cho tam giác ABC gọi M,N,P lần lượt là trung điểm của AB,AC,BC trên tia đối NP lấy Q sao cho NP=NQ , trên tia đối PM lấy E sao cho PM=ME
a chứng minh: 3 điểm A,E,Q thẳng hàng
b chứng minh: BE=QC,BE//QC
C chứng minh: AP,EC,QB đồng quy tại 1 điểm
Cho tam giác ABC. Trên cạnh AB lấy các điểm D và E sao cho AD = BE. Qua D và E, vẽ các đường thẳng song song với BC, chúng cắt AC theo thứ tự ở M và N. Chứng minh rằng DM + EN = BC
Hướng dẫn : Qua N, kẻ đường thẳng song song với AB
Cho đoạn thẳng BC, H là trùn điểm của đoạn thẳng BC. Qua H kẻ đường thẳng d vuông góc với BC. Trên đường thảng d lấy điểm A. Chứng minh tam giác AHB= tam giác AHC và AH là tia phân giác của góc BAC
cho tam giác ABC. Trên AB lấy hai điểm D và E sao cho AD=BE. Qua D và E, vew các đường thẳng song song với BC, chúng cắt AC theo thứ tự ở M và N. Chứng minh rằng DM+EN=BC.
GIÚP MK VỚI MK CẦN GẤP LẮM. CẢM ƠN BẠN.