a, Xét ΔDBAΔDBA và ΔABCΔABC có :
Góc B chung
Góc ADB = Góc BAC ( =90 o )
⇒ΔDBA=ΔABC(g−g)
b, Ta có : AB2 + AC2 =BC2 ( định lý Py -ta-go )
=> BC = \(\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\)
Lại có :\(\dfrac{AD}{AC}=\dfrac{AB}{BC}\)(ΔDBA∼ΔABC)
Suy ra : AD=\(\dfrac{AC.AB}{BC}\)=\(\dfrac{6.8}{10}\)=4,8(cm)
c, Ta có : BF là tia phân giác của góc B
=> \(\dfrac{FD}{FA}=\dfrac{BD}{AB}\)(1)
BE là tia phân giác của góc B
=> \(\dfrac{EA}{EC}=\dfrac{AB}{BC}\)(2)
Mà \(\dfrac{DB}{AB}\)=\(\dfrac{AB}{BC}\)(ΔDBA∼ΔABC)(3)
Từ (1), (2) và (3) suy ra :
\(\dfrac{FD}{FA}\)=\(\dfrac{EA}{EC}\)⇒FD.EC=EA.FA