Bài2:
Gọi M là trung điểm của AD
Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB=CD
Xét ΔCAD có CA+CD>AD
nên CA+AB>2AM
Bài2:
Gọi M là trung điểm của AD
Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB=CD
Xét ΔCAD có CA+CD>AD
nên CA+AB>2AM
Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh :
a) AB // CD
b) AB + AC > 2AM
c) AMB < AMC
Cho ∆ABC vuông tại A, có AB=3cm, BC=5cm. a) Tính độ dài AC. So sánh các góc của ∆ABC b) Gọi M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MB=MD. Chứng minh rằng: ∆ABM=∆CDM. c) Chứng minh 2.BM < AB + BC VẼ HÌNH VÀ GIẢI GIÚP MÌNH VỚI 😭
(3.0 điểm). Cho tam giác ABC vuông tại A, có AB = 3cm, BC = 5cm. a) Tính độ dài AC ? b) Gọi M là trung điểm của AC, Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh rằng: ABM = CDM. Từ đó suy ra AB = CD. c) Chứng minh 2.BM < AB + BC.
Cho tam giác ABC. Trên tia đối của AC lấy D sao cho AD= AC. Trên tia đối của tia AB lấy E sao cho AE= AB. Nối D với E
a) Chứng minh tam giác ABC= tam giác ADE
b) Gọi M là trung điểm của BC, N là trung điểm của DE. Chứng minh AM=AN
Cho tam giác ABC, điểm D nằm giữa B và C. Chứng minh rằng:
a)AD>AB+AC-BC/2
b)AD<AB+AC-BC/2
Cho tam giác ABC và các điểm M,N nằm trong tam giác sao cho đường thẳng MN cắt AB và AC. Chứng minh: BM + MN + NC < AB + AC
Cho tam giác ABC, gọi M là trung điểm của BC. Chứng minh rằng \(\dfrac{AB+AC-BC}{2}\) < AM < \(\dfrac{AB+AC}{2}\)
Cho tam giác ABC, lấy N nằm giữa A và B, Chứng tỏ NB+NC<AB+AC
cho tam giác abc có ab lớn hơn ac tia phân giác của góc a cắt bc ở d. gọi y là 1 điểm nằm giữa a và d chứng minh rằng ab -ac lớn hơn yb yc