1 Rút gon các biểu thức sau:
a) (y-3)(y+3) ; b) (m+n)(m^2-mn+n^2) ; c) (2-a)(4+2a+a^2)
d) (a-b-c)^2-(a-b+c)^2 ; e) (a-x-y)^3-(a+x-y)^3
f) (1+x+x^2)(1-x)(1+x)(1-x+x^2)
I,B=(3x-1)2-(x+7)2-2(2x-5)(2x+5)
II,tính giá trị của biểu thức
a,2x2+6xy-10 tại x=-4,y=3
b,x(x+y)+y(x+y) với x=19,6;y=0,4
c,x(x-3)-y(3-x) với x=1 phần 3;y=8 phần 3.
d,2x2(x2+y2)+2y2(x2+y2)+5(y2+x2) với x2+y2=1
thực hiện phép tính
a, \(\frac{x^2-yz}{1+\frac{y+x}{x}}+\frac{y^2-xz}{1+\frac{z+x}{y}}+\frac{z^2-xy}{1+\frac{x+y}{z}}\)
b, \(\left(1+\frac{y^2+z^2-x^2}{2yz}\right).\frac{1+\frac{x}{y+z}}{1-\frac{x}{y+z}}.\frac{y^2+z^2-\left(y-z\right)^2}{x+y+z}\)
c,\(\frac{2}{3}\left[\frac{1}{1+\frac{\left(2x+1\right)^2}{3}}+\frac{1}{1+\frac{\left(2x-1\right)^2}{3}}\right]\)
Tính GT biểu thức
a, A= 2. (X^3 + y^3) - 3(x^2+y^2) biết x+y=1
b, x^3 + y^3 + 3xy biết x+y=1
Cho x + y + z = a ; x^2 + y^2 + z^2 = b^2 và 1/x+1/y+1/z= c. Tính giá trị của biểu thức x^3 + y^3 + z^3 theo a, b, c
Rút gọn phân thức:
\(a,\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(b,\dfrac{\left(x^2-y\right)\left(y+1\right)+x^2y^2-1}{\left(x^2+y\right)\left(y+1\right)+x^2y^2+1}\)
Thực hiện phép tính:
a) \(\dfrac{x+1}{x+2}:\left(\dfrac{x+2}{x+3}:\dfrac{x+3}{x+1}\right)\)
b, \(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)
c, \(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)
d,\(\dfrac{x-1}{x^3}-\dfrac{x+1}{x^3-x^2}+\dfrac{3}{x^3-2x^2+x}\)
chứng minh hằng đẳng thức:
1, \(\left(x^2-xy+y^2\right)\left(x+y\right)=x^3+y^3\)
2, \(x^2-y^2=\left(x-y\right)\left(x+y\right)\)
3, \(x^2+2x+1=\left(x+1\right)^2\)
4,\(x^3-y^3=(x-y)(x^2+xy+y^2)\)
cho x-y=7 tính giá trị của các bt sau
a) A= x2+y2+4x-2xy+4y+2019
b) B=x3-3xy(x-y)-y3-x2+2xy-y2
c) C=x2(x+1)-y2(y-1)+xy-3xy(x-y+1)