B1 so sánh
a, \(\sqrt{48}\) +3 và 7+ \(\sqrt{10}\)
b, \(\sqrt{65}\)+\(\sqrt{50}\) và 15
c, \(\sqrt{197}\)-\(\sqrt{15}\) và 10
B2 Tìm điều kiện của x để các căn thức sau có nghĩa
a, \(\sqrt{1}\) - 4x
b,\(\sqrt{x^{ }2-x+1}\)
c, \(\sqrt{\frac{2x+1}{2-x}}\)
d, \(\sqrt{x^{ }2-5x+4}\)
e, \(\sqrt{x+1}\) + \(\sqrt{x-2}\)
CÁC ANH CHỊ GIÚP EM VỚI
Bài 1:
a)
\(\sqrt{48}< \sqrt{49}\) hay \(\sqrt{48}< 7\)
\(3=\sqrt{9}< \sqrt{10}\)
\(\Rightarrow \sqrt{48}+3< 7+\sqrt{10}\)
b)
\(\sqrt{65}>\sqrt{64}=8\); \(\sqrt{50}>\sqrt{49}=7\)
\(\Rightarrow \sqrt{65}+\sqrt{50}>8+7\) hay \(\sqrt{65}+\sqrt{50}>15\)
c)
\(\sqrt{197}>\sqrt{196}=14\)
\(\Rightarrow \sqrt{197}-\sqrt{15}>14-\sqrt{15}\). Mà \(\sqrt{15}< \sqrt{16}=4\)
\(\Rightarrow \sqrt{197}-\sqrt{15}>7-\sqrt{15}>14-4\)
hay \(\sqrt{197}-\sqrt{15}>10\)
Bài 2:
a) ĐKXĐ: \(1-4x\geq 0\Leftrightarrow x\leq \frac{1}{4}\)
b) ĐKXĐ: \(x^2-x+1\geq 0\)
\(\Leftrightarrow (x-\frac{1}{2})^2+\frac{3}{4}\geq 0\)
\(\Leftrightarrow x\in\mathbb{R}\)
c) ĐKXĐ:
\(\left\{\begin{matrix} 2-x\neq 0\\ \frac{2x+1}{2-x}\geq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} 2x+1\geq 0; 2-x>0 \\ 2x+1\leq 0; 2-x< 0\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} -\frac{1}{2}\leq x< 2\\ -\frac{1}{2}\geq x> 2(\text{vô lý})\end{matrix}\right.\Rightarrow -\frac{1}{2}\leq x< 2\)
d)
ĐKXĐ: \(x^2-5x+4\geq 0\Leftrightarrow (x-1)(x-4)\geq 0\)
\(\Leftrightarrow \left[\begin{matrix} x-1\geq 0; x-4\geq 0\\ x-1\leq 0; x-4\leq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x\geq 4\\ x\leq 1\end{matrix}\right.\)
e)
ĐKXĐ: \(\left\{\begin{matrix} x+1\geq 0\\ x-2\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -1\\ x\geq 2\end{matrix}\right.\Rightarrow x\geq 2\)
Bài 2:
a) ĐKXĐ: \(1-4x\geq 0\Leftrightarrow x\leq \frac{1}{4}\)
b) ĐKXĐ: \(x^2-x+1\geq 0\)
\(\Leftrightarrow (x-\frac{1}{2})^2+\frac{3}{4}\geq 0\)
\(\Leftrightarrow x\in\mathbb{R}\)
c) ĐKXĐ:
\(\left\{\begin{matrix} 2-x\neq 0\\ \frac{2x+1}{2-x}\geq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} 2x+1\geq 0; 2-x>0 \\ 2x+1\leq 0; 2-x< 0\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} -\frac{1}{2}\leq x< 2\\ -\frac{1}{2}\geq x> 2(\text{vô lý})\end{matrix}\right.\Rightarrow -\frac{1}{2}\leq x< 2\)
d)
ĐKXĐ: \(x^2-5x+4\geq 0\Leftrightarrow (x-1)(x-4)\geq 0\)
\(\Leftrightarrow \left[\begin{matrix} x-1\geq 0; x-4\geq 0\\ x-1\leq 0; x-4\leq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x\geq 4\\ x\leq 1\end{matrix}\right.\)
e)
ĐKXĐ: \(\left\{\begin{matrix} x+1\geq 0\\ x-2\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -1\\ x\geq 2\end{matrix}\right.\Rightarrow x\geq 2\)