Với các giá trị nào của x các biểu thức sau xác định
với giá trị nào của x thì biểu thức sau đây xác định
a,\(\sqrt{x^2+2x+8}\)
b,\(\sqrt{x^2-4x-5}\)
Bài 11. Cho biểu thức M = \(\dfrac{3\sqrt{x}+1}{\sqrt{x}+3}\) với 𝑥 ≥ 0; 𝑥 ≠ 9. Tìm số thực x để M là số nguyên
Bài 12. Cho biểu thức N = \(\dfrac{\sqrt{x}+3}{\sqrt{x}+5}\) với 𝑥 ≥ 0; 𝑥 ≠ 25. Chứng minh rằng không tồn tại giá trị của x để N là số nguyên.
* Với giá trị nào của x thì các căn sau có nghĩa:
a.\(\sqrt{8x+2}\)
b.\(\sqrt{\dfrac{-5}{6-3x}}\)
* Tìm giá trị nhỏ nhất của:
A=\(x-2\sqrt{x-2}+3\)
Bài 10. Cho biểu thức P = \(\dfrac{2\sqrt{x-3}}{\sqrt{x}+2}\) với 𝑥 ≥ 0; 𝑥 ≠ 4. Tìm các giá trị của x để P có giá trị nguyên.
Cho biểu thức A = x căn x+1/x-1 - x -1/căn x+ 1 a,Tìm điều kiện xác định và rút gọn biểu thức A b, Tìm giá trị của biểu thức khi X = 9/4 c, Tìm tất cả giá trị của x để A
Bài 5. Cho biểu thức: C = \(\dfrac{2\sqrt{x}-3}{\sqrt{x}-2}\) 𝑣ớ𝑖 𝑥 ≥ 0; 𝑥 ≠ 4. Tìm x nguyên để C đạt giá trị nguyên nhỏ nhất
Bài 6. Cho biểu thức: D = \(\dfrac{x-3}{\sqrt{x}+1}\) với 𝑥 ≥ 0; 𝑥 ≠ 1. Tìm x nguyên để D có giá trị là số nguyên
Bài 4. Với giá trị nào của x thì mỗi căn thức sau có nghĩa
c)\(\sqrt{x^2-3}\)
e) \(\sqrt{x.\left(x+2\right)}\)
biểu thức sau đây xác định với giá trị nào của x
\(\sqrt{\dfrac{4}{2x+3}}\) \(\sqrt{\dfrac{2x-1}{2-x}}\)