\(B=\dfrac{9}{10!}+\dfrac{10}{11!}+...........+\dfrac{99}{100!}\)
Ta thấy :
\(\dfrac{9}{10!}=\dfrac{10-1}{10!}=\dfrac{1}{9!}-\dfrac{1}{10!}\)
\(\dfrac{10}{11!}< \dfrac{11-1}{11!}=\dfrac{1}{10!}-\dfrac{1}{11!}\)
..........................
\(\dfrac{99}{100!}< \dfrac{100-1}{100!}=\dfrac{1}{99!}-\dfrac{1}{100!}\)
\(\Leftrightarrow B< \dfrac{1}{9!}-\dfrac{1}{10!}+\dfrac{1}{10!}-\dfrac{1}{11!}+...........+\dfrac{1}{99!}-\dfrac{1}{100!}\)
\(\Leftrightarrow B< \dfrac{1}{9!}-\dfrac{1}{100!}\)
\(\Leftrightarrow B< \dfrac{1}{9!}\rightarrowđpcm\)