bài 1:
a) D = \(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
b) E = \(\sqrt[3]{\sqrt{5}-2}+\sqrt[3]{\sqrt{5}+2}\)
c) F =\(\sqrt[3]{182+\sqrt{33125}}+\sqrt[3]{182-\sqrt{33125}}\)
bài 2:
a) C = \(\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}\)
b) D = \(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\frac{1}{2-\sqrt{3}}\)
c) E =\(\frac{3-x^2}{x+\sqrt{3}}\) với x\(\ne-\sqrt{3}\)
d) F = \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2019}+\sqrt{2020}}\)
e) G = \(\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}}\) (có vô hạn dấu căn)
Tính:
\(A=\sqrt{27}-2\sqrt{48}+3\sqrt{75}\)
\(B=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}-3\right)^2}\)
\(C=\sqrt{\left(2\sqrt{3}+1\right)^2}+\sqrt{\left(2\sqrt{3}-5\right)^2}\)
\(D=\sqrt{9-4\sqrt{5}}-\sqrt{14+6\sqrt{5}}\)
\(E=\dfrac{4}{\sqrt{5}-2}-\dfrac{32}{\sqrt{5}+1}\)
\(M=\dfrac{10}{3\sqrt{2}-4}+\dfrac{28}{3\sqrt{2}+2}\)
please help ;-;
Cho a,b,c,d,e >0CMR:
\(a+b+c+d+e\ge\sqrt{a}\left(\sqrt{b}+\sqrt{c}+\sqrt{d}+\sqrt{e}\right)\)
Tính:
\(A=\sqrt{20}-10\sqrt{\dfrac{1}{5}}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(B=2\sqrt{32}+5\sqrt{8}-4\sqrt{32}\)
\(C=\sqrt{\left(3-\sqrt{2}^2\right)}-\sqrt{\left(1-\sqrt{2}\right)^2}\)
\(D=\sqrt{\left(5-1\right)^2}+\sqrt{\left(\sqrt{5}-3\right)^2}\)
\(E=\left(3+\dfrac{5-\sqrt{5}}{\sqrt{5}-1}\right)\left(3-\dfrac{5+\sqrt{5}}{\sqrt{5}-1}\right)\)
\(F=\sqrt{6+2\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(G=\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\)
\(H=\dfrac{10}{\sqrt{3}-1}-\dfrac{55}{2\sqrt{3}+1}\)
help
Giải phương trình:
a. \(3\sqrt{8x}-\sqrt{32x}+\sqrt{50x}=21\)
b. \(\sqrt{25x+50}+3\sqrt{4x+8}-2\sqrt{16x+32}=15\)
c. \(\sqrt{\left(x-2\right)^2}=12\)
d. \(\sqrt{x^2-6x+9}-3=5\)
e.\(\sqrt{\left(2x-1\right)^2}-x=3\)
f. \(\sqrt{3x-6}-x=-2\)
h. \(\sqrt{3-2x}-2=x\)
Tính:
a,\(\sqrt{19-6\sqrt{2}}\)
b,\(\sqrt{21+12\sqrt{3}}\)
c,\(\sqrt{57-40\sqrt{2}}\)
d,\(\sqrt{\left(5-2\sqrt{6}\right)\left(4-2\sqrt{3}\right)}\)
e,\(\sqrt{21+6\sqrt{6}}+\sqrt{21-6\sqrt{6}}\)
g,\(\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)
Giải phương trình
a,\(\sqrt{x^2+x-20}=\sqrt{x-4}\)
b,\(\sqrt{x+1}+\sqrt{2-x}=\sqrt{6}\)
c,\(\sqrt{x+2\sqrt{x-1}=2}\)
d,\(\sqrt{2x-2+2\sqrt{2x-3}+}\sqrt{2x+13+8\sqrt{2x-3}=}5\)
e, \(\sqrt{x^2-1}-x^2+1=0\)
f,\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
g,\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
Tìm GTLN:
a) A= \(\sqrt{3-2x^2}\)
b) B= \(\sqrt{-9x^2+6x+3}\)
c) B= \(5+\sqrt{-4x^2-4x}\)
d) C= \(\sqrt{-x^2+x+\frac{3}{4}}\)
e) D= \(\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}\)
g) G= \(\sqrt{25x^2-20x+4}+\sqrt{25x^2}\)
f) F= \(\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
Tính:
a) \(\left(2\sqrt{5}-\sqrt{7}\right).\left(2\sqrt{5}+\sqrt{7}\right)\)
b)\(\left(\sqrt{5-2\sqrt{6}}+\sqrt{2}\right).\sqrt{3}\)
c)\(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
d)\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
e)\(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)
g)\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}\)