đkxđ x\(\ge0\); x#1, x#-1
A= \(\frac{x+1-2\sqrt{2}}{\sqrt{x}-1}\)\(+\frac{x+\sqrt{x}}{\sqrt{x}+1}\)
= \(\frac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{1}\)
=\(\frac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
=\(\frac{x+1-2\sqrt{x}+x-\sqrt{x}}{\sqrt{x}-1}\)
=\(\frac{2x-3\sqrt{x}+1}{\sqrt{x}-1}\)
=\(\frac{\left(2x-2\sqrt{x}\right)-\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
=\(\frac{2\sqrt{x}\left(\sqrt{x-1}\right)-\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
=\(\frac{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-1\right)}{\sqrt{x}-1}\)
=2\(\sqrt{x}-1\)
b) Để A> -1
=>\(2\sqrt{x}-1< -1\)
=> 2\(\sqrt{x}< 0\)( 2\(\sqrt{x}\ge0\forall x\))
=> Ko tìm dc nghiệm thỏa mãn