a.
\(A=\left(\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\cdot\left(x-\sqrt{x}-2\sqrt{x}+2\right)\\ =\left(\frac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\cdot\left[\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\right]\\ =\frac{1}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\left[\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\right]\\ =\frac{\sqrt{x}-1}{\sqrt{x}}\)
b.
\(A=\frac{\sqrt{x}-1}{\sqrt{x}}< \frac{1}{2}\\ \Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}}-\frac{1}{2}< 0\\ \Leftrightarrow\frac{2\left(\sqrt{x}-1\right)-\sqrt{x}}{2\sqrt{x}}< 0\\ \Leftrightarrow\frac{\sqrt{x}-2}{2\sqrt{x}}< 0\\ \Leftrightarrow\sqrt{x}-2< 0\\ \Leftrightarrow x< 4\)
Vậy với 0<x<4 thì A < \(\frac{1}{2}\)
c. Ta có \(A=\frac{\sqrt{x}-1}{\sqrt{x}}=1-\frac{1}{\sqrt{x}}\)
Để A đạt giá trị nguyên thì \(1⋮\sqrt{x}\Leftrightarrow\sqrt{x}\inƯ\left(1\right)\)
Mà \(\sqrt{x}>0\forall x>0\Rightarrow x=1\)
Vậy với x=1 thì A đạt giá trị nguyên