Ta có:
\(A=3^1+3^2+3^3+...+3^{2006}\)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{2007}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{2007}\right)-\left(3^1+3^2+3^3+...+3^{2006}\right)\)
\(\Rightarrow2A=3^{2007}-3\)
Thay vào biểu thức:
\(2A+3=3^x\)
\(\Rightarrow3^{2007}-3+3=3^x\)
\(\Rightarrow3^{2007}=3^x\)
\(\Rightarrow x=2007\)
Ta có
\(A=3^1+3^2+3^3+...+3^{2006}\)
\(3A=3^2+3^3+3^4+...+3^{2007}\)
⇒\(3A-A\)=( \(3^2+3^3+3^4+...+3^{2007} \) )−( \(3^1+3^2+3^3+...+3^{2006}\))
⇒\(2A=3^{2007}-3\)
⇒\(2A+3=3^{2007}\)
Mà \(2A+3=3^x\)
=> \(x=2007\)
Vậy..