\(A=1^2+2^{2^{ }}+3^2+4^2+...+99^2+100^2\)
\(A=1\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)+100.\left(101-1\right)\)
\(A=1.2-1.1+2.3-1.2_{ }+3.4-1.3+...+99.100-1.99+100.101-1.100\)
\(A=\left(1.2+2.3+3.4+...+99.100+100.101\right)-\left(1+2+3+...+99+100\right)\)
\(A=\left[1.2.3+2.3\left(4-1\right)+3.4.\left(5-2\right)+...+100.101\left(102-99\right)\right]:3-\left[\left(100+1\right).100:2\right]\)
\(A=\left(1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+100.101.102-99.100.101\right):3-5050\)
\(A=100.101.103:3-5050\)
\(A=338350\)
Tham khảo, chúc bạn học thật giỏi nha!