Cho \(u = u(x),\,v = v(x),\,w = w(x)\) là các hàm số có đạo hàm tại điểm x thuộc khoảng xác định. Chứng minh rằng \((u\,.\,v\,.\,w)' = u'\,.\,v\,.\,w + u\,.\,v'\,.\,w + u\,.\,v\,.\,w'\)
Cho hàm số \(y = f(u) = \sin u;\,\,u = g(x) = {x^2}\)
a) Bằng cách thay u bởi \({x^2}\) trong biểu thức \(\sin u\), hãy biểu thị giá trị của y theo biến số x.
b) Xác định hàm số \(y = f(g(x))\)
Bằng định nghĩa, tính đạo hàm của hàm sô \(y = \tan x\) tại điểm x bất kì, \(x \ne \frac{\pi }{2} + k\pi \,\,\,(k \in \mathbb{Z})\)
Tính đạo hàm của hàm số \(f\left( x \right) = \tan x\) tại điểm \({x_0} = - \frac{\pi }{6}\)
Tính đạo hàm của hàm số \(f\left( x \right) = \cot x\) tại điểm \({x_0} = - \frac{\pi }{3}\)
Tính đạo hàm của hàm số \(f\left( x \right)= \log x\) tại điểm \({x_0} = \frac{1}{2}\)
Cho hai hàm số \(f(x);\,g(x)\) xác định trên khoảng (a; b), cùng có đạo hàm tại điểm \({x_0} \in (a;b)\)
a) Xét hàm số \(h(x) = f(x) + g(x);\,\,x \in (a;b)\). So sánh
\(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{h({x_0} + \Delta x) - h({x_0})}}{{\Delta x}}\) và \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{g({x_0} + \Delta x) - f({x_0})}}{{\Delta x}} + \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f({x_0} + \Delta x) - g({x_0})}}{{\Delta x}}\)
b) Nêu nhận xét về \(h'({x_0})\) và \(f'({x_0}) + g'({x_0})\)
Bằng định nghĩa, tính đạo hàm của hàm số \(y = \cot x\) tại điểm x bất kì, \(x \ne k\pi (k \in \mathbb{Z})\)
Sử dụng kiết quả \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} = 1\), tính đạo hàm của hàm số \(y = \sin x\) tại điểm x bất kì bằng định nghĩa