a) Trong biểu đồ ở Hoạt động khởi động, cột thứ nhất biểu diễn số lượng học sinh có chiều cao từ 160 cm đến dưới 164 cm; cột thứ hai biểu diễn số lượng học sinh có chiều cao từ 164 cm đến dưới 168 cm, ...
Hãy lập bảng tần số ghép nhóm cho mẫu số liệu ở Hoạt động khởi động, xác định giá trị đại điện của mỗi nhóm và tính số trung bình của mẫu số liệu ghép nhóm.
b) Xét mẫu số liệu mới gồm các giá trị đại diện của các nhóm, tần số của mỗi giá trị đại diện bằng tần số của nhóm tương ứng. Hãy tính phương sai và độ lệch chuẩn của mẫu số liệu mới.
a)
Chiều cao (cm) | [160; 164) | [164; 168) | [168; 172) | [172; 176) | [176; 180) |
Số học sinh | 3 | 5 | 8 | 4 | 1 |
Giá trị đại diện | 162 | 166 | 170 | 174 | 178 |
b)
Giá trị đại diện | 162 | 166 | 170 | 174 | 178 |
Số học sinh | 3 | 5 | 8 | 4 | 1 |
Cỡ mẫu: n = 21
Giá trị trung bình của mẫu số liệu mới: \(\overline x = \frac{1}{n}({n_1}{c_1} + {n_2}{c_2} + ... + {n_k}{c_k}) = \frac{1}{{21}}(3.162 + 5.166 + 8.170 + 4.174 + 1.178) = \frac{{3550}}{{21}}\)
Phương sai của mẫu số liệu mới: \({S^2} = \frac{1}{n}[{n_1}{({c_1} - \overline x )^2} + {n_2}{({c_2} - \overline x )^2} + ... + {n_k}{({c_k} - \overline x )^2}] = \frac{1}{{21}}[3{(162 - \frac{{3550}}{{21}})^2} + 5{(166 - \frac{{3550}}{{21}})^2} + ... + 1{(178 - \frac{{3550}}{{21}})^2}] = \frac{{8000}}{{441}}\)
Độ lệch chuẩn của mẫu số liệu mới: \(\sigma = \sqrt {{S^2}} = \sqrt {\frac{{8000}}{{441}}} = \frac{{40\sqrt 5 }}{{21}}\)