a, Gọi phân số cần tìm là \(\dfrac{a}{b}\); phân số sau khi cộng là \(\dfrac{a+b}{b}\).
Theo bài ra ta có ;
\(\dfrac{a}{b}\cdot7=\dfrac{a+b}{b}\\ \Leftrightarrow\dfrac{7a}{b}=\dfrac{a}{b}+1\\ \Leftrightarrow\dfrac{7a}{b}-\dfrac{a}{b}=1\\ \Leftrightarrow\dfrac{6a}{b}=1\\ \Leftrightarrow6a=b\)
Vì \(\dfrac{a}{b}\) là phân số tối giản nên \(\dfrac{a}{b}=\dfrac{1}{6}\)
Vậy phân số tối giản cần tìm là \(\dfrac{1}{6}\)
b, Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}\)
Ta có :
\(A< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{\left(n-1\right)\cdot n}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\\ =\dfrac{1}{2}-\dfrac{1}{n}\)
Vì \(n\ge2vàn\in N\Rightarrow\dfrac{1}{2}\ge\dfrac{1}{n}\Rightarrow\dfrac{1}{2}-\dfrac{1}{n}< \dfrac{1}{2}\)
Mà \(\dfrac{1}{2}< \dfrac{97}{144}\Rightarrow\dfrac{1}{2}-\dfrac{1}{n}< \dfrac{97}{144}\Leftrightarrow A< \dfrac{97}{144}\\ \RightarrowĐpcm\)