a) \(3^{2x-1}=243\)
\(\Leftrightarrow3^{2x-1}=3^5\)
\(\Leftrightarrow2x-1=5\)
\(\Leftrightarrow2x=5+1\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=\dfrac{6}{2}\)
\(\Leftrightarrow x=3\)
Vậy \(x=3\)
b) \(\left(3^x\right)^2:3^3=\dfrac{1}{243}\)
\(\Leftrightarrow3^{2x}:3^3=\dfrac{1}{3^5}\)
\(\Leftrightarrow3^{2x}:3^3=3^{-5}\)
\(\Leftrightarrow3^{2x-3}=3^{-5}\)
\(\Leftrightarrow2x-3=-5\)
\(\Leftrightarrow2x=-5+3\)
\(\Leftrightarrow2x=-2\)
\(\Leftrightarrow x=-\dfrac{2}{2}\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)
c) \(2^{3x+2}=4^{x+5}\)
\(\Leftrightarrow2^{3x+2}=\left(2^2\right)^{x+5}\)
\(\Leftrightarrow2^{3x+2}=2^{2\left(x+5\right)}\)
\(\Leftrightarrow3x+2=2\left(x+5\right)\)
\(\Leftrightarrow3x+2=2x+10\)
\(\Leftrightarrow3x-2x=10-2\)
\(\Leftrightarrow x=8\)
Vậy \(x=8\)
d) \(3^{x+1}=9^x\)
\(\Leftrightarrow3^{x+1}=\left(3^2\right)^x\)
\(\Leftrightarrow3^{x+1}=3^{2x}\)
\(\Leftrightarrow x+1=2x\)
\(\Leftrightarrow2x-x=1\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)