=4x(\(\frac{1}{11x13}\)+\(\frac{1}{13x15}\)+.......+\(\frac{1}{99x101}\))
=4x(\(\frac{1}{11}\)-\(\frac{1}{13}\)+\(\frac{1}{13}\)-\(\frac{1}{15}\)+....+\(\frac{1}{99}\)-\(\frac{1}{101}\))
4x(\(\frac{1}{11}\)-\(\frac{1}{101}\))
=4x \(\frac{90}{1111}\)
=\(\frac{360}{1111}\)
\(\frac{4}{11\times13}+\frac{4}{13\times15}+\frac{4}{15\times17}+...+\frac{4}{99\times101}\)
\(=\frac{4}{11}-\frac{4}{13}+\frac{4}{13}-\frac{4}{15}+\frac{4}{15}-\frac{4}{17}+...+\frac{4}{99}-\frac{4}{101}\)
\(=\frac{4}{11}-\frac{4}{101}\)
\(=\frac{360}{1111}\)
Đặt biểu thức là A . Ta co
\(A=\frac{4}{11.13}+\frac{4}{13.15}+....+\frac{4}{99.101}\)
\(\Rightarrow2\left(\frac{2}{11.13}+\frac{2}{13.15}+....+\frac{2}{99.101}\right)\)
\(\Rightarrow A=2\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+.....+\frac{1}{99}-\frac{1}{101}\right)\)
\(\Rightarrow A=2\left(\frac{1}{11}-\frac{1}{101}\right)\)
\(\Rightarrow A=\frac{2.90}{1111}=\frac{180}{1111}\)