\(\left|4-x\right|+2x=3\) \(\Rightarrow\) Có 2 trường hợp xảy ra:
TH1: \(4-x+2x=3\)
\(\Rightarrow4+x=3\)
\(\Rightarrow x=3-4=-1\)
TH2: \(-\left(4-x\right)+2x=3\)
\(\Rightarrow-4+x+2x=3\)
\(\Rightarrow-4+3x=3\)
\(\Rightarrow3x=3-4=-1\)
\(\Rightarrow x=-1:3=\dfrac{-1}{3}\)
Vậy \(x\in\left\{-1;\dfrac{-1}{3}\right\}\)
\(\left|4-x\right|+2x=3\)
TH1: \(4-x\ge0\Leftrightarrow x\le4\)
\(4-x+2x=3\\ \Leftrightarrow4+x=3\\ \Leftrightarrow x=3-4\\ \Leftrightarrow x=-1\left(TM\right)\)
TH2: \(4-x< 0\Leftrightarrow x>4\)
\(-\left(4-x\right)+2x=3\\ \Leftrightarrow-4+x+2x=3\\ \Leftrightarrow-4+3x=3\\ \Leftrightarrow3x=3+4\\ \Leftrightarrow3x=7\\ \Leftrightarrow x=\dfrac{7}{3}\left(KTM\right)\)
Vậy $x=-1$ là nghiệm phương trình