14. √(7-4√3)
15. √(8+2√15)
16. √(10-2√21)
17. √(11+2√18)
18. √(7+2√10)
19. √(7+4√3)
20. √(12-2√35)
6. √(5+2√6)
7. √(4+2√3)
8. √(4-2√3)
9. √(11-2√30)
10. √(21-4√17)
tính:
a,\(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)
b,\(\sqrt{7-4\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)
c,\(\dfrac{x-49}{\sqrt{x}-7}\)
d,\(\sqrt{4+2\sqrt{3}}-\sqrt{13+4\sqrt{3}}\)
e,\(2+\sqrt{17-4\sqrt{9+4\sqrt{45}}}\)
CMR:
a) \(9+4\sqrt{5}=\left(\sqrt{5}+2\right)^2\)
b) \(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
c) \(23-8\sqrt{7}=\left(4-\sqrt{7}\right)^2\)
d) \(\sqrt{17-12\sqrt{2}}+2\sqrt{2}=3\)
Chứng minh rằng:
a, \(\left(2-\sqrt{3}\right)\sqrt{7+4\sqrt{3}}=1\)
b, \(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=8\)
\(\sqrt{x}+\sqrt[4]{x}+4\sqrt{17-x}+8\sqrt[4]{17-x}=34\)
\(\sqrt{17-4\sqrt{9+4\sqrt{5}}}\)
giải phương trình
1/\(\sqrt{x^2}-4x+8\) +\(\sqrt{x^2-4x+13}=17-2x^2+8x\)
2/\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x-24}=4-2x-x^2\)
Tính
a)\(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
b)\(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)
c) \(\sqrt{17-12\sqrt{2}}-\sqrt{24-8\sqrt{8}}\)
d)\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)