Bài 1: Sự đồng biến và nghịch biến của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thảo Hà

\(2x\sqrt{x^2+2}+\left(2x+3\right)\sqrt{x^2+2x+3}=\sqrt{x^2+2}-4x-2\)

tthnew
14 tháng 7 2019 lúc 19:08

Em ko chắc đâu!

ĐK: chắc là x thuộc R:v

PT \(\Leftrightarrow\left(2x-1\right)\sqrt{x^2+2}+\left(2x+3\right)\sqrt{x^2+2x+3}+4x+2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(\sqrt{x^2+2}-\frac{3}{2}\right)+10x+5+\left(2x+3\right)\left(\sqrt{x^2+2x+3}-\frac{3}{2}\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(\frac{x^2-\frac{1}{4}}{\sqrt{x^2+2}+\frac{3}{2}}\right)+10\left(x+\frac{1}{2}\right)+\left(2x+3\right)\left(\frac{x^2+2x+\frac{3}{4}}{\sqrt{x^2+2x+3}+\frac{3}{2}}\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(\frac{\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)}{\sqrt{x^2+2}+\frac{3}{2}}\right)+10\left(x+\frac{1}{2}\right)+\left(2x+3\right)\left(\frac{\left(x+\frac{1}{2}\right)\left(x+\frac{3}{2}\right)}{\sqrt{x^2+2x+3}+\frac{3}{2}}\right)=0\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left[\frac{\left(2x-1\right)\left(x-\frac{1}{2}\right)}{\sqrt{x^2+2}+\frac{3}{2}}+10+\frac{\left(2x+3\right)\left(x+\frac{3}{2}\right)}{\sqrt{x^2+2x+3}}\right]=0\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left[\frac{2x^2-2x+\frac{1}{2}}{\sqrt{x^2+2}+\frac{3}{2}}+10+\frac{2x^2+6x+\frac{9}{2}}{\sqrt{x^2+2x+3}}\right]=0\)

Dễ thấy cái ngoặc to vô nghiệm suy ra \(x=-\frac{1}{2}\)


Các câu hỏi tương tự
Phan thu trang
Xem chi tiết
Phạm Thu Uyên
Xem chi tiết
Tâm Cao
Xem chi tiết
Nguyễn Tường Vy
Xem chi tiết
Bảo Ken
Xem chi tiết
Tâm Cao
Xem chi tiết
Đoàn Hạ An
Xem chi tiết
Phạm Đắc Quyền
Xem chi tiết
Yến Hoàng
Xem chi tiết