1, Định nghĩa.
\(a.a.a.....a\)(có n thừa số a)\(=a^n\left(a\in N;a\ne0\right)\)
2, Quy ước.
+, \(a^0=1\left(a\ne0;a\in N\right)\)
+, \(a^1=a\left(a\in N\right)\)
3, Nhân chia 2 luỹ thừa có cùng cơ số.
\(a^n.a^m=a^{n+m}\)
\(a^n:a^m=a^{n-m}\left(a\ne0\right)\)(đối với việc chia bạn có thể thêm điều kiện n>m nhưng cũng có mũ âm nên mình không cho điều kiện vào nha)
4, Nhân chia luỹ thừa có cùng số mũ.
\(a^n.b^n=\left(a.b\right)^n\left(a;b;n\in N\right)\)
\(a^m:b^m=\left(\dfrac{a}{b}\right)^m\left(a;b;m\in N;b\ne0\right)\)
5, Luỹ thừa của một luỹ thừa.
\(\left(a^n\right)^m=a^{n.m}\left(a;n;m\in N\right)\)
6, Luỹ thừa với số mũ nguyên âm.
\(a^{-n}=\dfrac{1}{a^n}\left(a\in N;a\ne0;n\in N\text{*}\right)\)
7, Một số tính chất khác về luỹ thừa.
+, \(\left(A\right)^{2k}=\left(-A\right)^{2k}\left(k\in N\text{*}\right)\)
+, \(\left(A\right)^{2k+1}=-\left(-A\right)^{2k+1}\left(k\in N\right)\)
+, \(\left(A\right)^{2k}\ge0\left(k\in N\text{*}\right)\)
+,\(\left(A\right)^{2k}=\left(B\right)^{2k}\left(k\in N\text{*}\right)\)
\(\Leftrightarrow A=\pm B\)
+, \(A^m=A^n\ne>m=n\)
\(A^n=B^n\ne>A=B\)
Chúc bạn học tốt!!!