Ta có:
\(\left\{{}\begin{matrix}x-y=-9\\y-z=-10\end{matrix}\right.\)
\(\Rightarrow\left(x-y\right)+\left(y-z\right)=x-y+y-z=x-z=-9+\left(-10\right)=-19\)
\(\left\{{}\begin{matrix}x-z=-19\\z+x=11\end{matrix}\right.\)
\(\Rightarrow\left(x-z\right)+\left(z+x\right)=x-z+z+x=x+x=2x=-19+11=-8\Rightarrow x=-4\)
\(\Rightarrow y=5;z=15\)
Vậy \(\left\{{}\begin{matrix}x=-4\\y=5\\z=15\end{matrix}\right.\)