Bài 1.
Vì đths đi qua $M(-1;1)$ nên:
$y_M=2x_M+b$
$\Leftrightarrow 1=2.(-1)+b$
$\Leftrightarrow b=3$
Vậy đths có pt $y=2x+3$.
Hình vẽ:
Bài 2.
a. Hình vẽ:
Đường màu xanh là $y=2x-1$
Đường màu đỏ là $y=-x+2$
b.
PT hoành độ giao điểm:
$y=2x-1=-x+2$
$\Leftrightarrow x=1$
$y=2x-1=2.1-1=1$
Vậy tọa độ giao điểm của 2 đồ thị là $(1;1)$
1, đths y = 2x + b đi qua M(-1;1) <=> -2 + b = 1 <=> b = 3
2b, Hoành độ giao điểm thỏa mãn phương trình
2x - 1 = -x + 2 <=> x = 1
=< y = 2 - 1 = 1
Vậy y = 2x - 1 cắt y = -x + 2 tại A(1;1)
1) Thay x=-1 và y=1 vào (d), ta được:
\(2\cdot\left(-1\right)+b=1\)
\(\Leftrightarrow b=3\)
2)
b) Phương trình hoành độ giao điểm là:
\(2x-1=-x+2\)
\(\Leftrightarrow2x+x=2+1\)
hay x=1
Thay x=1 vào y=2x-1, ta được:
\(y=2\cdot1-1=1\)