a) \(\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+...+\dfrac{1}{x.\left(x+2\right)}=\dfrac{16}{99}\)
\(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+...+\dfrac{1}{x.\left(x+2\right)}=\dfrac{16}{99}\)
\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{x}-\dfrac{1}{\left(x+2\right)}=\dfrac{16}{99}.2\)
\(\dfrac{1}{3}-\dfrac{1}{\left(x+2\right)}=\dfrac{32}{99}\)
\(\dfrac{1}{\left(x+2\right)}=\dfrac{1}{3}-\dfrac{32}{99}\)
\(\dfrac{1}{\left(x+2\right)}=\dfrac{1}{99}\)
\(\Rightarrow x+2=99\\ x=99-2\\ x=97\)