Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyen Gia Bao

1 oto và 1 xe máy cùng khởi hành để đi từ A đến B cách nhau 120km vì vận tốc của oto lớn hơn vận tốc xe máy là 4km/h nên oto đến B trước xe máy 50p.Hỏi vận tốc mỗi xe

Nguyễn Huy Tú
31 tháng 1 2022 lúc 9:52

Gọi vân tốc, thời gian ô tô lần lượt là x;y ( x;y > 0 ) 

Theo bài ra ta có hpt 

\(\left\{{}\begin{matrix}xy=120\\\left(x-4\right)\left(y+\dfrac{5}{6}\right)=120\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}xy=120\\xy+\dfrac{5x}{6}-4y-\dfrac{10}{3}=120\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5x}{6}-4y-\dfrac{10}{3}=0\\y=\dfrac{120}{x}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5x}{6}-\dfrac{480}{x}-\dfrac{10}{3}=0\\y=\dfrac{120}{x}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\approx26\\y=\dfrac{60}{13}\end{matrix}\right.\)

vân tốc xe máy là x - 4 = 26 - 4 = 22 km/h 

Xyz OLM
31 tháng 1 2022 lúc 9:57

Gọi vận tốc xe máy là x(km/h) ; (x > 0)

=> Vận tốc ô tô là x + 4 (km/h) 

Thời gian đi của xe máy : \(\dfrac{120}{x}\left(h\right)\)(1) 

Thời gian đi của ô tô : \(\dfrac{120}{x+4}\)(h) (2)

Vì ô tô đến trước xe máy 50 phút = 5/6 giờ (3) 

Từ (1)(2)(3) => Phương trình  : \(\dfrac{120}{x}-\dfrac{120}{x+4}=\dfrac{5}{6}\)

<=> \(\dfrac{1}{x}-\dfrac{1}{x+4}=\dfrac{1}{144}\)

<=> \(\dfrac{4}{x\left(x+4\right)}=\dfrac{1}{144}\)

<=> x2 + 4x - 576 = 0 

<=> \(\left(x+2-\sqrt{580}\right)\left(x+2+\sqrt{580}\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{580}-2\\x=-\sqrt{580}-2\left(\text{loại}\right)\end{matrix}\right.\Leftrightarrow x=\sqrt{580}-2\)Vận tốc xe máy : \(\sqrt{580}-2\)(km/h) ; 

Vận tốc ô tô \(\sqrt{580}+2\)(km/h)