Bài 1:
Gọi 4 số tự nhiên liên tiếp đó lần lượt là a,a+1,a+2,a+3\(\left(a;a+1;a+2;a+3\in N\right)\)
Theo bài ra ta có:
\(a\left(a+1\right)\left(a+2\right)\left(a+3\right)+1\)
\(=\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)
Đặt \(a^2+3a+1=t\) khi đó ta có:
\(\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2\)
Vậy \(t^2\) là số chính phương suy ra \(\left(a^2+3a+1\right)^2\) là số chính phương ta có điều phải chứng minh
bài 2: ý tưởng là thay vào
bài 3: gọi UCLN(...)=d
Xét hiệu...