1)
\(A=\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+...+\dfrac{500}{5^{500}}\\ 5A=1+\dfrac{2}{5}+\dfrac{3}{5^2}+...+\dfrac{500}{5^{49}}\\ 5A-A=\left(1+\dfrac{2}{5}+\dfrac{3}{5^2}+...+\dfrac{500}{5^{49}}\right)-\left(\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+...+\dfrac{500}{5^{500}}\right)\\ 4A=1-\dfrac{500}{5^{500}}\\ A=\left(1-\dfrac{500}{5^{500}}\right):4\\ A=1:4-\dfrac{500}{5^{500}}:4\\ A=\dfrac{1}{4}-\dfrac{500}{5^{500}\cdot4}< \dfrac{1}{4}< \dfrac{5}{16}\)
Vậy \(A< \dfrac{5}{16}\)