1, \(a, \sqrt{3x-5} = \sqrt{7x-1} \)
\(b, \sqrt{5x-7}=m \) Biện luận theo m
\(c, \sqrt{x-3} + \sqrt{13-x} =2\sqrt{5}\)
\(d, \sqrt{x-2} + \sqrt{4-x} = x^{2} -6x+11 \)
\(e, \sqrt[3]{x-7} + \sqrt[3]{x-3} =\sqrt[6]{(x-3)(x-7)}\)
\(f, \sqrt[3]{x-1} + \sqrt[3]{x+1} =\sqrt[3]{5x}\)
\(g, \sqrt[3]{x+5} + \sqrt[3]{x+6} =\sqrt[3]{2x+11}\)
h, \(\sqrt[3]{(x-2)^{2}} + \sqrt[3]{(x+7)^{2}} - \sqrt[3]{(2-x)(x+7)}\)
\(k, \sqrt{\dfrac{x}{2x-1}} +\sqrt{\dfrac{2x-1}{x}} = 2\)
MN THÔNG CẢM R GIÚP EM VỚI Ạ
a, Điều kiện x ∉ {\(\frac{5}{3};\frac{1}{7}\)}
\(\sqrt{3x-5}=\sqrt{7x-1}\)
\(\left(\sqrt{3x-5}\right)^2=\left(\sqrt{7x-1}\right)^2\)
\(\left|3x-5\right|=\left|7x-1\right|\)
\(3x-5=7x-1\)
\(-4x=4\) => x = -1