P= \(\dfrac{2\sqrt{x}}{\sqrt{x}-3}+\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{3x-3}{9-x}\)
= \(\dfrac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
= \(\dfrac{2x+6\sqrt{x}+x-3\sqrt{x}-3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
= \(\dfrac{3\sqrt{x}+3}{x-9}\)