a)\(\left(2\sqrt{3}+\sqrt{5}\right)\cdot\sqrt{3}-\sqrt{60}=6+\sqrt{15}-\sqrt{60}\)=6+\(\sqrt{15}-2\sqrt{15}\)=6+\(\sqrt{15}\)
B)\(\left(5\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}-\sqrt{250}\)=\(5\sqrt{10}+10-5\sqrt{10}\)=10
c)\(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\cdot\sqrt{7}+2\sqrt{21}\)=\(\left(2\sqrt{7}-2\sqrt{3}-\sqrt{7}\right)\cdot\sqrt{7}+2\sqrt{21}\)
=(\(\sqrt{7}\)-2\(\sqrt{3}\))\(\cdot\sqrt{7}+2\sqrt{21}\)=7-2\(\sqrt{21}\)+\(2\sqrt{21}\)=7
d)\(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\cdot\sqrt{11}+3\sqrt{22}\)=\(\left(3\sqrt{11}-3\sqrt{2}-\sqrt{11}\right)\cdot\sqrt{11}+3\sqrt{22}\)=33-3\(\sqrt{22}\)-11+3\(\sqrt{22}\)=22