Bài này mà sử dụng đồng dư thì đơn giản kinh khủng :)
Đặt \(A=p^{q-1}+q^{p-1}-1\)
Vì p,q là các số nguyên tố khác nhau nên \(\left(p;q\right)=1\)
Áp dụng định lý Fecma nhỏ có \(p^{q-1}\text{≡}1\left(modq\right)\)
Mà \(q^{p-1}\text{≡}0\left(modq\right)\)
\(\Rightarrow p^{q-1}+q^{p-1}-1\text{≡}1+0-1\text{≡}0\left(modq\right)\)
\(\Rightarrow A\text{⋮}q\)
Tương tự, vẫn áp dụng định lý Fecma nhỏ có \(q^{p-1}\text{≡}1\left(modp\right)\)
Mà \(p^{q-1}\text{≡}0\left(modp\right)\)
\(\Rightarrow p^{q-1}+q^{p-1}-1\text{≡}0+1-1\text{≡}0\left(modp\right)\)
\(\Rightarrow A\text{⋮}p\)
Có \(A\text{⋮}p\)và \(A\text{⋮}q\); mà \(\left(p;q\right)=1\) nên \(A\text{⋮}p.q\)
Vậy ...
Bạn có thể hiểu thêm về định lý Fecma : nếu a , b nguyên tố cùng nhau thì \(a^{b-1}\text{≡}1\left(modb\right)\)cũng như \(b^{a-1}\text{≡}1\left(moda\right)\)