Câu trả lời:
Sua de 1 chuc A=n2+4a-5 khong chia het cho 8 voi moi n le nhe !
Với n=0 =>A(n)=0 chia hết cho 8 với n lẻ
Giả sử A(n) chia hết cho 8 với n=2k+1 nghĩa là:
A(k)=(2k+1)^2+4*(2k+1)-5 chia hết cho 8
Ta cần chứng minh A(n) chia hết cho 8 với n=2k+3
Ta có: A(2k+3)=(2k+3)^2+4(2k+3)-5
= 4k^2+12k+9+8k+12-5
= (4k^2+4k+1)+(8k+4)-5+8k+16
= (2k+1)^2+4(2k+1)-5+8(k+2)
= A(2k+1)+8(k+2) chia hết cho 8
Vậy theo quy tắc quy nạp thì :
A(n)=n^2+4n-5 chia hết cho 8 với n lẻ