HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho biểu thức 2 1 2 1 1 K a a a) Tìm điều kiện của a để biểu thức K xác định. b) Rút gọn biểu thức K c) Tính giá trị biểu thức K khi 1 2
Cho tam giác ABC vuông tại A có AB = 6cm, BC = 10cm. Gọi I là trung điểm của BC, trên tia đối của tia IA lấy điểm D sao cho IA = ID a) Chứng minh ABDC là hình chữ nhật, tính diện tích hình chữ nhật ABDC b) Gọi J là điểm đối xứng với I qua AC, E là giao điểm của IJ và AC. Chứng minh AICJ là hình thoi.
Cho hình thang ABCD (AB // CD), có 𝟾 = 𝟾 = 90 0 và CD AB AD 2 . Kẻ BE vuông góc với CD (ECD). a) Chứng minh rằng tứ giác ABED là hình vuông. b) Gọi I là trung điểm của BE. Chứng minh tứ giác ABCE là hình bình hành, từ đó suy ra điểm A đối xứng với điểm C qua I. c) Kẻ DH vuông góc với AC (HAC), AE cắt DH tại M và AE cắt DI tại N. Chứng minh tứ giác DMBN là hình thoi.
Cho tam giác ABC, các trung tuyến BD và CE cắt nhau tại G. Gọi P, Q lần lượt là trung điểm của CG và BG. Chứng minh tứ giác PQED là hình bình hành
Cho tam giác ABC, các trung tuyến BD và CE cắt nhau tại G. a) Chứng minh ED // BC và 2 BC ED b) Gọi P, Q lần lượt là trung điểm của CG và BG. Chứng minh tứ giác PQED là hình bình hành.