Chủ đề:
Violympic toán 9Câu hỏi:
giải hpt \(\left\{{}\begin{matrix}x^3-2xy^2-4y=0\\x^2-8y^2=-4\end{matrix}\right.\)
Cho đường tròn (O) đường kính AC, điểm B nằm giữa hai điểm O và C. Vẽ đường tròn tâm O’ đường kính BC. Gọi M là trung điểm của đoạn thẳng AB. Từ M vẽ dây cung DE của đường tròn (O) vuông góc với AB; DC cắt đường tròn tâm O’ tại I. Chứng minh:
1. Tứ giác ADBE là hình thoi.
2. Tứ giác DMBI nội tiếp đường tròn (4 điểm D, M, B, I nằm trên cùng một đường tròn).
3. MC.DB = MI.DC.
4. MI là tiếp tuyến của đường tròn (O’).
Cho đường tròn (O) đường kính AB. Kẻ tiếp tuyến Ax với đường tròn. Điểm C thuộc nửa đường tròn cùng nửa mặt phẳng với Ax với bờ là AB. Phân giác góc CAx cắt đường tròn tại E, cắt BC ở D. Chứng minh:
a) Tam giác ABD cân.
b) H là giao điểm của BC và DE. Chứng minh DH ^ AB.
c) BE cắt Ax tại K. Chứng minh tứ giác AKDH là hình thoi.
d) Tìm vị trí của C trên cung AB để DABD đều.