HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Chứng minh rằng: \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{49.50}=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)
MỌI NGƯỜI GIÚP EM VỚIBài 1: tìm xa)\(\left|3x-5\right|=4\)b)\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)c)\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)Bài 2: Tínha)\(\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{\dfrac{4}{9}-\dfrac{4}{7}-\dfrac{4}{11}}+\dfrac{\dfrac{3}{5}-\dfrac{3}{25}-\dfrac{3}{125}-\dfrac{3}{625}}{\dfrac{4}{5}-\dfrac{4}{25}-\dfrac{4}{125}-\dfrac{4}{625}}\)
b)\(\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)c)\(\dfrac{\left(\dfrac{3}{10}-\dfrac{4}{15}-\dfrac{7}{20}\right).\dfrac{5}{19}}{\left(\dfrac{1}{14}+\dfrac{1}{7}-\dfrac{-3}{35}\right).\dfrac{-4}{3}}\)
tìm x ∈ N :\(\left(\dfrac{2}{5}\right)^x>\left(\dfrac{5}{2}\right)^{-3}.\left(\dfrac{-2}{5}\right)^2\)
tìm x biết: \(\left(8.x-1\right)^{2n+1}=5^{2n+1}\) (n∈N)
tìm xϵZ biết: \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
tìm x biết: a) \(5^x.\left(5^3\right)^2=625\)b)\(\left(\dfrac{12}{15}\right)^x=\left(\dfrac{5}{3}\right)^{-5}-\left(-\dfrac{3}{5}\right)^4\)c)\(\left(-\dfrac{3}{4}\right)^{3x-1}=\dfrac{256}{81}\)d)\(172x^2-7^9:98^3=2^{-3}\)