HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho tam giác ABC có \(\widehat{A}\) = 120o , đường phân giác AD. Chứng minh rằng:
\(\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{1}{AD}\)
Cho tam giác ABC vuông tại A (AB < AC), kẻ đường cao AH, đường trung tuyến AM. Đường thẳng vuông góc với AM tại A cắt đường thẳng BC tại D. Chứng minh rằng:
a) AB là tia phân giác của góc DAH.
b) BH.CD = BD.CH
Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Gọi BD là đường phân giác của tam giác ABC.
a) Tính độ dài DA, DC.
b) Tia phân giác của góc C cắt BD tại I. Gọi M là trung điểm của BC. Chứng minh \(\widehat{BIM}\) = 90o
a) (x2 - 5x)2 + 10(x2 - 5x) + 24 = 0
b) (2x + 1)2 - 2x - 1 = 2
c) x(x - 1)(x2 - x + 1) - 6 = 0
d) (x2 + 1)2 + 3x(x2 + 1) + 2x2 = 0