Gọi 5 số tự nhiên liên tiếp lần lượt là a, a + 1, a + 2, a + 3, a + 4
- Nếu a chia hết cho 5 thì a x (a + 1) x (a + 2) x (a + 3) x (a + 4) chia hết cho 5
- Nếu a chia cho 5 dư 1 thì a + 4 chia hết cho 5, do đó:
a x (a + 1) x (a + 2) x (a + 3) x (a + 4) chia hết cho 5
- Nếu a chia cho 5 dư 2 thì a + 3 chia hết cho 5, do đó:
a x (a + 1) x (a + 2) x (a + 3) x (a + 4) chia hết cho 5
- Nếu a chia cho 5 dư 3 thì a + 2 chia hết cho 5, do đó:
a x (a + 1) x (a + 2) x (a + 3) x (a + 4) chia hết cho 5
- Nếu a chia cho 5 dư 4 thì a + 1 chia hết cho 5, do đó:
a x (a + 1) x (a + 2) x (a + 3) x (a + 4) chia hết cho 5
Vậy tích của 5 số tự nhiên liên tiếp bao giờ cũng chia hết cho 5