Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Có tam giác ABE đồng dạng tam giác ACF, tam giác AEF đồng dạng tam giác ABC. Chứng minh:
a) tam giác HEF đồng dạng tam giác HBC.
b) H là giao 3 đường phân giác của tam giác HEF.
c) AH.DH = BH.EH = CH.FH.
d) BH.BE + CH.CF = \(BC^2\)
Bài 1: Cho Tam giác ABC vuông tại A và tam giác A'B'C' vuông tại A' có \(\frac{AB}{A'B'}+\frac{BC}{B'C'}=3\)
Chứng minh:
a) \(\frac{CA}{C'A'}=3\) và tam giác ABC đồng dạng vs tam giác A'B'C'.
b) Tính tỉ số chu vi của tam giác ABC và tam giác A'B'C' bằng 3.
Cho tam giác ABC có AB = 6cm, AC = 9cm, BC = 12cm. Trên cạnh AB lấy điểm D sao cho AD = 2cm, trên cạnh AC lấy điểm E sao cho AE = 3cm.
a) Chứng minh tứ giác BCED là hình thang
b) Tính DE.
c) Gọi O là giao điểm của BE và CD. Qua O kẻ đường thẳng song song với BC, đường thẳng này cắt BD, CE lần lượt tại I và K . Chứng minh OI = OK.
d) Chứng minh: \(\frac{ID}{BD}+\frac{KC}{EC}=1\)
Bài 1: Với a,b,c khác 0. CMR: \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c^{ }}\)
Bài 2: CMR: Nếu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\) và a + b +c = abc thì \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\) với điều kiện a,b,c khác 0 và a+b+c khác 0.