Tìm GTNN của biểu thức:
a) A = |x+5|+|x+17|
Giải
Ta có : A = |x+5|+|x+17| ≥≥ |x+5+x+17|
A = |-x-5|+|x+17| ≥≥ |-x-5+x+17| = | -12 | = 12
Dấu bằng xảy ra khi - 17 ≤≤ x ≤≤ -5
Vậy MinA=12 khi - 17 ≤≤ x ≤≤ -5
b) B = |x+8|+|x+13|+|x+50|
Giải
B = |x+8|+|x+13|+|x+50| ≥≥ (| x+8|+|-50-x |)+|x+13|
= (| x+8-50-x |)+|x+13|
= |-42| + |x+13|
= 42 + |x+13| ≥≥ 42
Vậy MinB = 42 khi và chỉ khi:
⎧⎪⎨⎪⎩x+8≥0x+13=0x+50≥0{x+8≥0x+13=0x+50≥0 ⇒⎧⎪⎨⎪⎩x≥−8x=−13x≥−50⇒{x≥−8x=−13x≥−50 ⇒x=−13⇒x=−13
c) C = |x+5|+|x+2|+|x−7|+|x−8|
Giải
C = |x+5|+|x+2|+|x−7|+|x−8|
\(\ge\) |x+5| + |x+2| + |7-x| + |8-x|
≥≥ |x+5+7-x| + |x+2+8-x|
≥≥ |12| + |10|
≥≥ 12 + 10 ≥≥ 22
Vậy MinC = 22 khi và chỉ khi :
-5 ≤≤ x ≤≤ 8 và -2 x ≤≤ 7 ⇔⇔ -2 ≤≤ x ≤≤ 7
d) D = |x+3|+|x−2|+|x−5|
Giải
D = |x+3|+|x−2|+|x−5|
≥≥ ( |x+3|+|5-x| ) + |x-2| ≥≥ | x+3+5-x | + | x-2 | ≥≥ | 8 | + | x-2 | ≥≥ 8 + | x-2 | ≥≥ 8 Vậy MinD = 8 khi và chỉ khi: ⎧⎪⎨⎪⎩x+3≥0x−2=05−x≥0{x+3≥0x−2=05−x≥0 ⇒⎧⎪⎨⎪⎩x≥−3x=2x≤5⇒{x≥−3x=2x≤5 ⇒x=2