HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
trước tiên ta cần chứng minh một bài toán phụ:f(x) là 1 đa thức với hệ số nguyên:f(x)=anxn+an-1xn-1+....+a1x+a0
a,b là 2 số nguyên khác nhau,chứng minh f(a)-f(b) chia hết cho (a-b)
lấy f(a)-f(b) rồi ghép các hạng tử có cùng bậc là ra nka bn
áp dung:f(x)=f1(x3)-f1(1) + x.f2(X3) -x.f2(1)+f1(1)+x.f2(1) mà f1(X3)-f1(1) chia hết cho x^3-1 nên chia hết cho x2+x+1,tương tự với f2,theo giả thiết thì f(x) chia hết cho x2 +x+1 nên f1(1)+x.f2(1) chia hết cho x2 +x+1 mà f1(1)+x.f2(1) có bậc bé hơn hoặc bằng 1 nên f1(1) + xf2(1)=0
SUY RA:f1(1)=f2(1)=0
theo định lí bezout suy ra f1(x) chia hết cho x-1 và f2(x) chia hết cho x-1
bài toán đã dc giải guyết,trong lời giải có thể có chút sai sót và hơi khó hiểu nên mong các bạn góp ý và cho mình