1, Cho hàm số f(x) liên tục , có đạo hàm trên R thỏa mãn 2f(3)-f(0)=18 và \(\int\limits^3_0\left(f'\left(x\right)+1\right)\sqrt{x+1}dx=\frac{302}{15}\). Tính tích phân \(I=\int\limits^3_0\frac{f\left(x\right)dx}{\sqrt{x+1}}\)
2, Cho hàm số f(x) liên tục , có đạo hàm trên đoạn [1;3] thỏa mãn f(3)=f(1)=3 và \(\int\limits^3_1\frac{xf'\left(x\right)}{x+1}dx=0\). Tính tích phân \(I=\int\limits^3_1\frac{f\left(x\right)+lnx}{\left(x+1\right)^2}dx\)
1, Cho hàm số f(x) liên tục trên đoạn \([\frac{2}{3};1]\) và thỏa mãn \(2f\left(x\right)+3f\left(\frac{2}{3x}\right)=5x\) với \(\forall x\in\left[\frac{2}{3};1\right]\). Tính tích phân \(I=\int\limits^1_{\frac{2}{3}}\frac{f\left(x\right)}{x}dx\)
2, Cho hàm số f(x) liên tục trên đoạn [0,2] và thoản mãn \(3f\left(x\right)-4f\left(2-x\right)=-x^2-12x+16\) với \(\forall x\in\left[0;2\right]\). Tính tích phân \(I=\int\limits^2_0f\left(x\right)dx\)
3, Cho hàm số f(x) liên tục trên R và thỏa mãn \(f\left(x\right)=4xf\left(x^2\right)+2x+1\) với \(\forall x\in R\) . Tính tích phân \(I=\int\limits^1_0f\left(x\right)dx\)
1, Viết phương trình mặt phẳng (P) chứa O(0,0,0) và vuông góc với \(\left(P_1\right):x-y+z-7=0\) và \(\left(P_2\right):3x+2y-12z+5=0\)
2, Cho A(0,1,2) và \(d:\frac{x}{2}=\frac{y-1}{1}=\frac{z+1}{1}\) và \(d^':\left\{{}\begin{matrix}x=1+t\\y=-1-2t\\z=2+t\end{matrix}\right.\) , viết ptmp \(\left(\alpha\right)\) đi qua A và song song với d,\(d^'\)
1, I = \(\int\limits^1_0\dfrac{2x+1}{x^2+x+1}dx\)
2,\(\int\limits^{\dfrac{1}{2}}_0\dfrac{5xdx}{\left(1-x^2\right)^3}\)
3, \(\int\limits^1_0\dfrac{2x}{\left(x+1\right)^3}dx\)
4, \(\int\limits^1_0\dfrac{4x-2}{\left(x^2+1\right)\left(x+2\right)}dx\)
5, \(\int\limits^1_0\dfrac{x^2dx}{x^6-9}\)
6, \(\int\limits^2_1\dfrac{2x-1}{x^2\left(x+1\right)}dx\)