lCho tam giác ABC nối tiếp trong dường tròn (O) . M là 1 điểm thuộc cung BC của đường tròn ( O ) không chứa A . Gọi D ; E ; H lần lượt là hình chiếu của M trên các cạnh BC ; CA ; AB . Chứng minh rằng\(\frac{BC}{Md}=\frac{CA}{ME}+\frac{AB}{MH}\)
Tính giá trị của :
D=\(\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}\right)x\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)-\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)x\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}\right)\)