Ban tự vẽ hình nha, mk ko biết up hình lên đây
a) Ta thấy: Tam giác ABC cân tại C (CA = CB)
Xét 2 tg vuông ACI và tg vuông BCI có:
CA = CB (gt)
góc CAI = góc CBI (tg ABC cân tại C)
=> tg ACI = tg BCI (cạnh huyền - góc nhọn)
=> IA = IB (2 cạnh tương ứng)
b) Ta có: IA = IB = 1/2,AB = 1/2.12 = 6 (cm)
Áp dụng định lí Pitago vào tg vuông ACI, có:
\(CA^2=IA^2+IC^2\)
\(\Rightarrow IC^2=CA^2-IA^2\)
\(\Rightarrow IC^2=10^2-6^2=64\)
\(\Rightarrow IC=8\)
Vậy IC = 8 (cm)
c) Xét 2 tg vuông CHI và tg vuông CKI có:
CI là cạnh chung
góc HCI = góc KCI (2 góc tương ứng do tg ACI = tg BCI)
=> tg CHI = tg CKI (cạnh huyền - góc nhọn)
=> IH = IK (2 cạnh tương ứng)
Trong tg vuông ACI, ta có:
\(S\Delta ACI=\frac{IH.CA}{2}=\frac{CI.IA}{2}\)
\(\Rightarrow IH.CA=CI.IA\)
\(\Rightarrow IH=\frac{CI.IA}{CA}=\frac{8.6}{10}=\frac{48}{10}=4,8\)
Vậy IH = IK = 4,8 (cm)