Câu trả lời:
theo bđt Cô-si A+B ≥ \(2\sqrt{AB}\)
=> \(\dfrac{1}{A}+\dfrac{1}{B}\) ≥ \(2\sqrt{\dfrac{1}{AB}}\)
<=> 2 (\(\dfrac{A+B}{AB}\)) ≥ \(\sqrt{\dfrac{1}{AB}}\)
bình phương cả hai vế
[2(\(\dfrac{A+B}{AB}\))]2 ≥ \(\dfrac{1}{AB}\) ≥ \(\sqrt{\dfrac{1}{AB}}\) ∀ A,B > 0
=> \(\dfrac{4\left(A+B\right)^2}{\left(AB\right)^2}\)≥ \(\dfrac{1}{AB}\)