Chủ đề:
Bài 2. PHƯƠNG TRÌNH ĐƯỜNG TRÒNCâu hỏi:
1. Trong Oxy, cho (C): \(x^2+y^2-2x-6y+6=0\), M (-3; 1).
a) Chứng minh M nằm ngoài (C). Gọi A, B là tiếp điểm của các tiếp tuyến từ M đến (C). Tìm tọa độ A, B.
b) Viết phương trình tiếp tuyến d' của (C) biết d' hợp với đường thẳng \(\Delta':2x+y-1=0\) góc 450.
2. Trong Oxy, cho (C1): \(x^2+y^2-2x-4y+1=0\), M (3; 4).
a) Viết phương trình tiếp tuyến d1 với đường tròn (C1) tại giao điểm của \(\Delta_1:x-2y+5=0,\Delta_2:3x+y+1=0\).
b) Viết phương trình đường tròn (C2) có tâm M, cắt đường tròn (C1) tại hai điểm A, B sao cho \(S_{\Delta IAB}\) lớn nhất.
MONG MỌI NGƯỜI GIÚP ĐỠ CHO MÌNH! CẢM ƠN RẤT NHIỀU!