Cho (O;R) , A nằm ngoài đường tròn . Qua A kẻ tiếp tuyến AB , AC với (O) ( B , C là tiếp điểm ) . Vẽ tia Ax nằm giữa tia AB , AO cắt nhau tại M , N
a, chứng minh A , B , C , D thuộc đường tròn
b, chứng minh BC \(\perp\) AO = \(\left\{H\right\}\)
c, tính OH.OA theo R ( R là bán kính của (O) )
Cho đường tròn tâm O bán kính R và một điểm A nằm ngoài đường tròn . Qua A kẻ tiếp tuyến AB với đường tròn ( B là tiếp điểm ) . Vẽ tia Ax nằm giữa tia AB và tia AO cắt đường tròn (O) tại hai điểm C và D ( C nằm giữa A và D ) . Gọi M là trung điểm của dây CD , kẻ BH vuông góc với AO tại H .
a, Tính tích OH.OA theo R
b, chứng minh 4 điểm A , B , M , O cùng thuộc một đường tròn
c, Gọi E là giao điểm của OM với HB . Chứng minh ED là tiếp tuyến của đường tròn ( O;R )
Rút gọn các biểu thức sau : ( giá trị các biểu thức chứa chữ đều có nghĩa )
a, \(5\sqrt{\frac{1}{5}}\) . \(\frac{1}{2}\sqrt{20}\) + \(\sqrt{5}\)
b, \(\sqrt{\frac{1}{2}}\) + \(\sqrt{4,5}\)
c, \(\sqrt{20}\) + \(\sqrt{45}\) - \(3\sqrt{75}\) + \(\sqrt{72}\)
d, \(5\sqrt{a}\) - \(4\sqrt{25a^2}\) + \(\sqrt{9a}\) - \(2\sqrt{16a}\)
e, \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}\) + \(\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
g, \(\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}\) + \(\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)