Cho đường tròn (O) bán kinh AB, M thuộc đường tròn. Vẽ N đối xứng A qua M; BN cắt đường tròn tại C. Gọi E là giao điểm của AC và BM; F là điểm đổi xứng với E qua M.
a) Chứng minh \(NE\bot AB\)
b) Chứng minh FA là tiếp tuyến của (O).
c) Chứng minh FN là tiếp tuyến của đường tròn (B;BA)
d) Chứng minh BM . BF = BF2 - FN2
Hình vẽ.
Giúp em bài này với, em nghĩ không ra.
Gọi C là điểm nằm trên nửa đường tròn tâm O, đường kính AB (C khác A, B). Trên nửa mặt phẳng bờ AB chứa nửa đường tròn, dựng tiếp tuyến Ax với nữa đường tròn. Tia BC cắt Ax tại I; tia phân giác góc IAC cắt nửa đường tròn tại E và cắt BC tại F; tia BE cắt AC tại K.
a) Chứng minh E, F, C, K cùng nằm trên một đường tròn
b) Chứng minh tam giác ABF cân.
c) Gọi G là trung điểm IA. Chứng minh GC là tiếp tuyến của nửa đường tròn O.
Em cần câu b, c ạ.
Cho đường tròn tâm O bán kính R, dây BC khác đường kính, Hai tiếp tuyến của đường tròn (O;R) tại B và tại C cắt nhau tại A. Kẻ đường kính CD, kẻ BH vuông góc với CD tại H.
a) Chứng minh $AO \bot BC.$
b) Cho biết $R = 15, BC = 24 (cm).$ Tính AB, OA.
c) Chứng minh BC là tia phân giác $\widehat{ABH}.$
Em cần câu c thôi ạ.
Hình vẽ.
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 9 cm, AC = 12 cm.
a) Tính BC, AH
b) Vẽ đường tròn tâm A bán kính AH. Từ C vẽ tiếp tuyến CD với đường tròn tâm A (D là tiếp điểm). Đường thẳng DH cắt AC tại I. Chứng minh \(IA\cdot IC=\dfrac{DH^2}{4}\)
c) Đường thẳng DA cắt đường tròn tâm A tại điểm thứ hai là E. Chứng minh BE là tiếp tuyến đường tròn tâm A.