Ta chứng minh được những hệ thức sau :
+)\(\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R\)( định lý sin ) \(\Rightarrow2R=\dfrac{a+b+c}{\sin A+\sin B+\sin C}\)
+)\(S_{ABC}=\dfrac{\left(a+b+c\right).r}{2}\)
Now let's prove that problem:
\(VT=\dfrac{h_a^2}{bc}+\dfrac{h_b^2}{ac}+\dfrac{h_c^2}{ab}=2S_{ABC}.\dfrac{h_a+h_b+h_c}{abc}=r.\left(a+b+c\right)\dfrac{h_a+h_b+h_c}{abc}\)
\(VP=\dfrac{9r}{2R}=\dfrac{9r\left(\sin A+\sin B+\sin C\right)}{a+b+c}\)
Do đó chỉ cần chứng minh \(\left(h_a+h_b+h_c\right)\left(a+b+c\right)^2\ge9abc\left(\sin A+\sin B+\sin C\right)\)
Để ý rằng \(h_a+h_b+h_c=c.\sin B+a.\sin C+b.\sin A\)
Áp dụng BĐT chebyshev:
\(c.\sin B+a.\sin C+b.\sin A\ge\dfrac{1}{3}\left(a+b+c\right)\left(\sin A+\sin B+\sin C\right)\)
Do đó \(VT\ge\dfrac{\left(a+b+c\right)^3}{3}.\left(\sum\sin A\right)\ge VF\)(đúng theo AM-GM
)
Dấu = xảy ra khi a=b=c và BĐT chebyshev này chỉ đúng khi
\(\left\{{}\begin{matrix}a\ge b\ge c\\\sin A\ge\sin B\ge\sin C\end{matrix}\right.\),điều này luôn đúng