Mình chỉnh lại đề chút xíu cho dễ nhìn nhé :
Cho đa thức : \(x^3+ax^2+bx-2\)
Xác định a.b biết : P(1) = -1 và P(2) = 1.
Bài làm :
Ta có : P(1) = \(1^3+a.1^2+b.1-2=-1\)
\(\Rightarrow P\left(1\right)=1+a+b-2=-1\)
\(\Rightarrow P\left(1\right)=a+b=-1-1+2=0\)
\(\Rightarrow P\left(1\right)=a=-b\)
P(2) \(=2^3+a.2^2+b.2-2=1\)
\(\Rightarrow P\left(2\right)=8+4a+2b-2=1\)
\(\Rightarrow P\left(2\right)=4a+2b=1-8+2=-5\)
\(\Rightarrow P\left(2\right)=-4b+2b=-5\Rightarrow2b=5\Rightarrow b=\dfrac{5}{2}\)
Lại có : P(1) = \(1^3+a.1^2+\dfrac{5}{2}.1-2=-1\)
\(\Rightarrow P\left(1\right)=1+a+\dfrac{5}{2}-2=-1\)
\(\Rightarrow P\left(1\right)=a+\dfrac{5}{2}=-1-1+2\Rightarrow a=-\dfrac{5}{2}\)
Vậy a = \(-\dfrac{5}{2}\)
b = \(\dfrac{5}{2}\)
Sai thôi nhé .